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A solution is given for the problem of contact heat transfer at the surface of a two-layer floor in the non-
stationary regime.

Contact heat transfer between a human foot and a floor may (in designing the floor) be considered as heat transfer
between a finite heat source and a two-layer slab, The amount of heat absorbed by the floor from a heat source has been
taken [1] as a characteristic parameter of the insulating properties of the floor.

On the basis of previous investigations [1, 2], to determine the amount of heat absorbed by a floor, we can consid-
er the problem as one of one-dimensional heat propagation, when the temperature of the floor surface is kept constant
during heat transfer by an artificial source.

The floor consists of a covering of thickness 64 and a base which, for short time intervals, may be assumed to be a
uniform half-space relative to the covering.

It is known from [3] that the temperature field in the first layer (covering) 0 = x = &, is given by

tl = tp lierfc—ﬁ__——___— hEhn ! erfC“‘%IL—,.__.—Tx" —
2vVar & 2V
erfc 2nd; +x
2Vas )] @
An expression for the specific heat flux is obtained by differentiating (1) with respect to x and substituting the re-
oty
sult in the equality ¢ =&\ —__ . Then
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To determine the amount of heat Q absorbed by the floor in any time interval 7, we integrate (2) with respect to

time 7:
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Transforming the equation by means of the substitution X = 1/3/t and the notation k = n%63/ay, and integrating the in-
tegral on the right side of (3), we obtain, returning to the original notation,
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Substituting this value of the integral in (3), we find an expression for determining the amount of heat Q absorbed
by the floor in any interval of time Ty
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If the thermal coefficients of the first and second layers are identical, then h = 0, and we obtain the same solution as for
a single half-space [4]:
Q = 2%,V 7 7

Equation (4) can be used to determine the heat losses from a source maintaining a constant temperature at the sur-
face of the floor.

NOTATION

ay — thermal diffusivity of first layer; t; and t; — temperature of covering and base; t, — floor tempexature at ini-
tial moment of time, kept constant during the heat transfer process; b; and by —heat accumulation coefficients of first
and second layers; Q — amount of heat in time ;.
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